BBAMEM 75801

Highly selective blockade of the frog skin sodium channels by monovalent copper cations

Igor A. Skulskii and Anatol V. Lapin

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg (Russia)

(Received 6 April 1992) (Revised manuscript received 24 August 1992)

Key words: Copper effect; Sodium ion channel; (Frog skin)

0.5 mM Cu $^+$ added to the mucosal side of frog skin caused rapid reversible inhibition of short-circuit current while no effect of Cu $^+$ could be observed at the serosal side. In both cases Cu $^{2+}$ was reduced to Cu $^+$ by adding 10 mM ascorbic acid. Cu $^+$ being similar to Na $^+$ both in charge and crystal radius (0.096 and 0.095 nm, respectively) appears to block Na $^+$ channels in the apical membrane. Cu $^{2+}$ being of a smaller size (crystal radius 0.072 nm) was ineffective at the mucosal side causing only a rather slow irreversible inhibition of Na $^+$ transport when added to the serosal bathing solution.

Introduction

There is a vast literature concerning biological effect of Cu²⁺, whereas the action of Cu⁺ has not received much attention [1-4]. We supposed that in some cases Cu⁺ may specifically interact with Na⁺-dependent systems due to the identity of Cu⁺ and Na⁺ both in charge and crystal radius (0.096 nm and 0.095 nm, respectively). The data presented support this hypothesis. It has been shown that Cu⁺ but not Cu²⁺ (crystal radius 0.072) inhibits transport of Na⁺ through the apical membrane of the frog skin.

Materials and Methods

Abdominal skin of the frog species Rana temporaria was mounted in an Ussing-type chamber (1.2 cm²) designed to allow rapid addition of various ingredients to bathing solutions while studying Na⁺ transport. The skin was kept in open-circuit state, the short-circuit current being measured from time to time for 30-60 s. In all the experiments the, bathing solutions were nitrate Ringer-type media of the composition (mM): Na 113; K 3.35; Ca 2.8; glucose 10; Tris-buffer 10; pH 7.4-7.5. Cl⁻ was substituted by NO₃⁻ in order to prevent possible precipitation of CuCl. Complete reduction of Cu²⁺ to Cu⁺ was achieved with 10 mM

ascorbic acid. The concentration of Cu⁺ was determined by using disodium 2,2-bicinchoninate (Sigma, St. Louis, MO) as a chromogen [5].

Results and Discussion

Figs. 1-4 demonstrate the typical results obtained in 5-7 similar experiments. Fig. 1 shows that incubation of frog skin in Ringer-NO₃⁻ containing 0.5 mM mucosal Cu²⁺ did not affect the short-circuit current (SCC). Adding 10 mM ascorbic acid to the mucosal medium caused fast inhibition of SCC presumably due to the reduction of Cu²⁺ to Cu⁺, while ascorbic acid itself had no effect (not shown). The inhibition of SCC

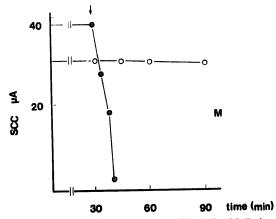


Fig. 1. Inhibition of Na⁺ transport (SCC) by 0.5 mM Cu⁺ produced in the mucosal bathing solution by reduction of Cu²⁺ with 10 mM ascorbic acid (↓). ●, Cu⁺; ○, Cu²⁺.

Correspondence to: I.A. Skulskii, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences. Thorez pr. 44, 194223, St. Petersburg, Russia.

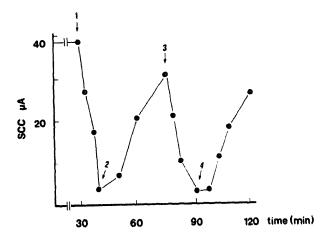


Fig. 2. Reversibility of the inhibitory effect of Cu⁺, 1, Inhibition of SCC by mucosal Cu⁺; 2, restoration of SCC by Cu⁺ free solution; 3, inhibition of SCC by mucosal Cu⁺; 4, restoration of SCC by complexation of Cu⁺ with 2,2-bicinchoninic acid.

by Cu⁺ was fully reversible (Fig. 2). Replacement of the Cu⁺ containing mucosal solution by a fresh Cu-free solution or removal of Cu⁺ by non-toxic complex formation with 2,2-bicinchoninate [5], restored SCC up to initial level. No effect could be observed when Cu⁺ was applied at the scrosal side. Exposing the scrosal membrane to Cu²⁺ led to a slow irreversible inhibition of SCC (not shown). An increase of the concentration

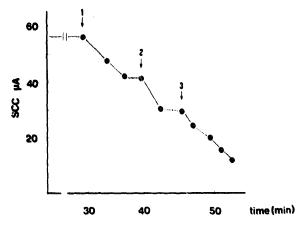


Fig. 3. Dependence of the inhibitory effect of Cu⁺ on concentration in the mucosal solution. 1, 0.1 mM; 2, 0.2 mM; 3, 0.3 mM.

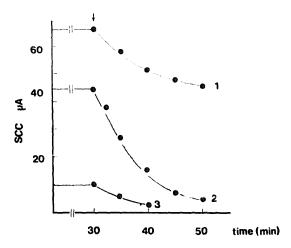


Fig. 4. Inhibition of SCC by 0.5 mM Cu⁺ in the presence of various concentration of Na⁺, 1, 113 mM; 2, 5 mM; 3, 2 mM.

of mucosal Cu⁺ led to increased inhibition of SCC (Fig. 3). The inhibition of SCC by Cu⁺ diminished with increase of the mucosal Na⁺ concentration (Fig. 4). Cu⁺ seems to compete with Na⁺. Being equal to Na⁺ both in charge and size, Cu⁺ can occupy the entry to the Na⁺-selective channel, thereby blocking SCC. Chemically, it could be expected that binding of Cu⁺ with various membrane ligands is stronger compared with Na⁺. To our knowledge Cu⁺ is the only inorganic cation shown specifically inhibit of Na⁺ transport across the apical membrane of the frog skin. The effects of Cu⁺ seem to depend on the system studied, for instance, there was no interaction of Cu⁺ with Na⁺/H⁺ antiport in rat liver mitochondria [3].

References

- 1 Ferreira, K.T.G., Guerreira, M.M. and Svensson, W.M. (1979) Biochim. Biophys. Acta 552, 341–345.
- 2 Leblondel, G. and Allain, P. (1984) J. Inorg. Biochem. 21, 241-245.
- 3 Skulskii, I.A. and Lapin, A.V. (1989) Dokl. Akad. Nauk, USSR 307, 737-739.
- 4 Saris, N.-E.L. and Skulskii, I.A. (1991) Acta Chem. Scand. 45, 1042-1046.
- 5 Blank, A.B., Chepurnaya, V.G., Ekcperianova, L.B. and Vaulenko, V.Ya. (1974) Zh. Anal. Khim. 29, 1705.